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Summary 

Perturbation  techniques based on Lie  transforms  as suggested by 

Deprit were used as   the  theoretical  foundation  for programming the 

analytical solution of  the Main Problem in Satellite Theory  (all 

gravitational harmonics being zero except    J.,) .    The collection of 

formulas necessary  and sufficient  to construct an ephemeris  is given 

in  the exposition.     Short  and  long period displacements,  as well as  the 

secular  terms, have been obtained  up  to the third order in    J«    as power 

series  of  the eccentricity.     They result  from two successive completely 

canonical  transformations which  it has been found convenient not  to 

compose  into a unique  transformation.    Division by  the eccentricity 

appears nowhere in  the developments—neither explicitly nor implicitly. 

The determination of the constants of motion from the initial conditions 

has been given an elementary solution that  is both  complete and explicit 

without being iterative.     The program was  developed by Rom from MAO's 

package  of subroutines  for Mechanized Algebraic Operations.    Reliability 

tests have been run in two instances:    in-track errors  for ANNA IB are 

only 20   cm.   after 210 days  in orbit, while   for RELAY II,   they are 2.4 m. 

even after 350 days   in orbit. 
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Introduction 

By  the present communication, we  announce  that  the  theory of an 

artificial satellite can be produced explicitly in  fully  analytical 

forir by means  of programs which enable  computers  to process  literal 

expressions.     We   justify this effort by displaying in two particular 

instances   the  accuracy yielded by  the series over very  long arcs. 

Theories  of artificial satellites   can be characterized by  the basic 

coordinates   they use to map  the phase spice.    For no other reason than 

our personal  likinp for Delaunay's elements, we have chosen  to develop 

the Main Problem as set up by Brouwer  (1959).    This selection does not 

imply  a judgment  on the  relative merits  of Delaunay's variables versus 

spheroidal   coordinates   (Vinti, Kislik,  Aksenov),  elliptic elements derived 

from spheroidal coordinates  (Iszak)   or secularly processing elliptic ele- 

ments   (Sterne,  Garfinkel,  Aksnes).     But we submit  that  comparison of 

analytical  theories will not   lead  to definitive  conclusions  less we have 

the  capabilities  of generating each  of   them automatically  by  computer 

so  that we   can   transfer analytically   the  constants  of one   theory  into 

those  of  any  other. 

Our  treatment  of  the Main Problem  is  original  on  five  points: 

(i)     We  discarded   the so-called  Von Zeipel's  method,  which  is  an 

algorithm devised by Poincare  (1893)   to  generate a  canonical  transformation 

from a determining  function  in  mixed  variables   (old  coordinates  and new 

momenta).     Instead, we  use  a  formalism proposed elsewhere   (Deprit  1969) 

■""—'*■—i*ar' i" 
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under the name of Lie  transforms.    The advantage  is  that we generate 

explicitly  the canonical  transformations and their  inverses without 

inversions or substitutions,  and that we avail ourselves of a systematic 

procedure  for transforming any state   function into  the new phase variables. 

(ii)    We gave up Brouwer's plan  for a theory  in a closed  form. 

Indeed, although we  could  reproduce by Lie  transforms the first order 

terms computed by Brouwer with Von Zeipel's  method, we found that,  at   the 

second order,   the quadrature for    W2    prescribed by   the Lie transforms 

bears, among others,  on  terms of the  type 

a-f)r"5sin 2g, U-Or^sinCf+Zg) 

(JL-Or'^sin 2g, (£-f)r"Usir.(:-2g) 

(£-f)r'3sin 2g, (£-f) r"3sin(f+2g) 

a-f)r'3sin(f-2g). 

We  tried repeatedly  to express in closed form the  integrals of  these 

functions  over  the mean anomaly.    Actually, Moses   (1969)   indicated  that 

such quadratures might not be expressible in closed  form by means of  the 

usual elementary functions.    Similar terms have been encountered by Aksnes 

(1966)   in his   theory  of an artificial satellite.     In sum,  the possibility 

of  implementing Brouwer's   theory beyond the second order in a closed  form 

by means of  rational,  sine  and cosine  functions may now be regarded as  an 

open question  that might   likely be answered in  the negative.     For this 

reason, we  decided to expand the perturbing  function in powers  of  the 

eccentricitv. 
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(iii)     Delaunay's mapping  from polar coordinates   to elliptic 

elements has  the zero eccentricity as a singularity.     It  causes troubles in 

the  corrections  to be  computed  for the mean anomaly and  the argument of 

perigee.    One way of  circumventing them would be  to  coordinatize the phase 

space by means of eaccntrin elements as defined by Poincare or Hori.    But 

it would generate  considerable,   although not insuperable,  complications 

in   the perturbation algorithm  (see,   for instance, Meffroy  1968).    Instead, 

taking  advantage  of  the systematic  rule offered by Lie  transforms  for 

transposing state  functions, we  decided,  on one hand,   to retain Delaunay's 

elements  as  the phase  coordinates, while,  on  the other hand, we base  the 

ephemeris of the satellite on  functions of  these phase  coordinates   that 

are exempt from singularities   for zero eccentricities.    We have selected 

the mean distance    F = £ + g     to  the node,   the eccentric  functions    C ■ e  cos  g, 

S * e  sin g,    and   the usual Delaunay's elements, namely the longitude    h 

of   the ascending node, the polar  component    H    of the angular momentum, 

and  the  action    L =    v^a, 

(iv)    We obtain  the short  and  long period terms   through  the rfiird 

order in    J0,    and the secular  terms  through  the fourth order in    J2.   in 

practice,  so high an  order may seem unrealistic.    But, because the series 

are purely  literal,   th3y constitute a sort of arahive  document:    within  the 

accuracy  of  twelve significant   figures,   their coefficients have been 

determined once and   for all.     In  the majority of cases where  the second 

order is sufficient,   the user can ignore in the series  the contributions 

of  the   third order.     But   for  very   lonp arc predictions,   it  is,  of  course, 

imperative  to take into account   the secular  terms of  order  three and  four. 
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In sum,   the higher  the order of a  literal   theory,  the more users  it  is  likely 

to serve. 

Brouwer's   theory consists essentially  of  two successive canonical 

transformations.     We  tried to compose them into a unique transformation as 

Brouwer proposed  it  in his original paper.     But  the operations involved 

so large a number of  terms in the end products  as well as in the  inter- 

mediate  results   that we  concluded it would be more economic  to keep   the 

two mappings separate. 

(v)    The Main Problem of an artificial satellite is  treated here 

explicitly as a problem of initial  conditions.    The constants of  the motion 

are not  left  to be determined by successive  iterations  (Cain 1962)   or by 

least squares;  the inverse canonical  transformations are used to develop 

explicitly  the series  that express  the average elements in  terms of  the 

osculating elements. 

The present   communication is well restricted in its intentions.    We 

meant more  than  reproducing by machine the  original paper of Brouwer and 

its extension by Kozai.     In fact we reworked its  underlying formalism and 

saw to it  that it   lended Itself to a smooth  automatic processing by 

computers.     At  the same   time, we eradicated  the main sources of difficulties 

that so  far have  adversely affected the use of several  theories of artifi- 

cial satellites,  ramely,   the premature truncatures in    J2,     the determination 

of the constants   of  the motion,  and  the singularity of  the  zero eccentricity. 

Having established  that   the Main Problem of Brouwer's  theory can be solved 

to  the greater convenience of the users, we  reckon that  the completion of 
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Brouwer's  theory nau is more a matter of developmental effort  than a 

research problem. 

The basic steps of  the paper are the classical ones.    We expounded 

on  the introduction of Delaunay's variables with more details than are 

necessary for an expert   (Section 2); but,  in the  classroom and in seminars, 

we expt rienced  that  the standard references do not  adequately meet with   the 

demands of astrodynami^s engineers in  this matter.     Sections 3 - 5 cover  the 
i 

elimination of short period terms, i.e.,  the construction of a canonical 

transformation to average over the mtan anomaly, while Sections  6 and 7 

outline tlie elimination of   ;he long period terms,  i.e.,  the averaging 

over the argument of perigee by constructing a second canonical transforma- 

tion.    We conclude  the analytical study by indicating how the secular 

equations and the ephemeris  (in position and velocity)  ought to be computed 

so that the singularity of zero eccentricity can be radically eradicated 

(Sections  8 and   9 ). 

Finally we present  numerical evidence as  to  the reliability of the 

present solution.    As  illustrations, we   took the satellites ANNA IB and 

RELAY II because  thsir orbits have  recently served to compare various 

theories  (Bonavito et at  1968).    Positions and velocities  computed from 

the series are compared with  the results of an accurate stepwise integra- 

tion of the Main Problem.     The errors exhibited  are unusually small, 

although they are accumulating over time intervals  comparable with the 

period of rotation of  the perigee.     Our purpose here  is only  to establish 

that  the analytical solution as we have it does not distort appreciably, 

even over long arcs,   the problem it purports  to solve, which is solely 

Brouwer's Main Problem of Satellite Theory. 
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1.       The Main Problem 

In the slx-dimenslonal phase space product  of  the three-dimensional 

Euclidean space of positions    (x,y,z)    by the  three-dimensional Euclidean 

space of velocities     (X,Y,Z),    consider the Hamiltonian function 

31- j (X2+Y2+Z2) h# (3 sln2ß-l) (1) 

where 

r »   |x2+y2+z2|'' 

and    3    is  the latitude with respect  to the  coordinate plane    Oxy, 

thus unambiguously defined by the trigonometric relations 

cos (x2+y2) Vr,        sin 3 » z/r. 

The system described by  the Hamiltonian  (1)   constitutes the Main Problem 

(MP)   in the  theory of a close satellite  for an oblate planet.     In  that 

context,    p  > 0    is  the constant of gravitation  for the planet (dimension: 

length3/time2),    R    > 0    is  the mean radius  of  the planet, whereas 

J,  4 0    Is  a  (dimensionless)   constant  of oblateness. 

This is  a reversible  system with  three  degrees of freedom.     Its 

Hamiltonian being conservative,  it  admits as  a  first integral 

3f ■ constant. (2) 

Moreover the same Hamiltonian being invariant with respect to the commu- 

tative group of rotations around the position axis Oz,  the MP possesses 
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of    R   ,     the part of  (4)  which  contains    J,    Is of  the  order of    J2. 

Henceforth  assuming that    J0     Is  a small number, we decompose   (4)   Into 

the sum 

Ä = ^0 + J^ (5,) 

with 

^o   -VVV-'W^  '¥^P  "r   • 0 

1 yp2   /    y 

^1     ^h^'-'V*^  "  IT^l3 r | siii2I-l). 

(52) 

(53) 

In  this way,   the    MP    is interpreted  as basically a problem of  two bodies 

described by   (5 ), but perturbed by  forces whose potential is    J2^' 

Along  this  line of  approach  our  Interest  lies  in simplifying as much 

as possible   the principal  component   31  .      A first step  in  that  direction 
o 

consists  In introducing the polar components in  the Instantaneous orbital 

plane    ;i(t).       Thus consider  the   function 

S   z   SU.O.X^)  = -rO^cos   fi+YNsln ••) 

and the completely canonical  transformation from the state variables 

(x^,y   ,X,^,Y  )     to the state  variables     (r,0,R/)       implicitly  defined by 

the  equations 

*>; = ":)S/ ,XN r cos 

R = 

.S/:>YM  =  r  sin   -, 

^S/-tr = X^jCos 6 + Y sin ", 

JS/ . • =  rC-X^sin   !!+Y.,cos  •') 
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P -  (1J/Lr)[(rA-r)(r-rL)r
1. 

Under  the assumption  (7),   consider the  function 

S   = S(r,0,L,G;u)  - CO +     J   P(r,L,G;u)dr 
rP 

and  the  completely  canonical   transformation  from the state variables 

(r,e,R,0)     to the state variables    (il,g,L,G)     implicitly defined by  the 

equations 

R -  3S/ar ' P(r,L,G;vj) , 

0 »  38/36 = G, 

1 =  3S/3L -  (u2/L3)    f  dr/P(r;L,C;y), 

^P 

= oS/3G - 6   - G/   dr/HP(r,L,G;p). 
rP 

It  can be expressed in a closed  form.    Indeed define   the  functions 

a  -   a(L,u)     and    e       e(L,G)     by   the conditions 

a  >  0, L"   =  ua, 

1 > e >  0, G = L(l-e2)'. 

In  terms  of    a    and    e,     the roots of    P(r)   = 0    become 

fp = a(l-e), rA = a(l+e). 

Now uniformize the quadrature   for    I    by substituting  for the variable 

r    an  angle    u    such  that 

r =  a(l-e  cos   u); 
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compute  that 

dr « ae sin u du 

r    - r = 2ae  cos2(u/2), 

r - rp - 2ae sin2(u/2) , 

and  check  that   the equation  in     i    becomes 

I. = u - e sin u. 

The quadrature  defining    g    is  uniformized by substituting  for the 

variable     r     an  angle    f    such   that 

1/r = (1+e  cos   f)/p, 

where    p       p(n;u)     is defined by  the  conditions 

B  ^   0 , G2  ■ up. 

Calculate that 

dr =   (e/p)r sin  f   •   df, 

rA - r =  [2e/(l-e)lr cos2(f/2). 

r - rp =   [2e/(l+e)]r sin2(f/2), 

and so  check   that 

p, =   •   -   f. 

From the resulting identities 

R = (Le/r)sin u = (ue/r,)sin f. 

SBBaMsaaHHaHUHMMBaHia^^^fa^ 
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we easily derive  that 

R2 + (cVr2)  - (2u/r)  -  (u2/L2), 

In sum,  Delaunay's mapping transforms  the Hamiltonian (6)   into the 

sum 

^    #U,g,-,L,G,H)   - J£0 + J^, (V 

3f0   - W0(-.-,-,L,-,-)   = -p2/2L2, 

1   ^^e f/ 1       3 \ 
Ä,   - ^(^.g.-.L.G.H)   - 2 T^L'l " 2  COs21/   " 

(72) 

| sin2I sin(2f+2g)] (7, 

2.       The Case of Small Eccentricities 

We propose  to expand  the perturbation   3{      as  given by (7 )   in power 
1 3 

series of  the eccentricity,  thus  limiting the  application of the  theory  to 

close satellites with small eccentricities. 

The development of     1/r3,    cos 2f/r3    and    sin 2f/r3    is  implemented 

automatically by  computer  (Deprit and Rom 1967).    The  following remarks  are 

in order.    As power series  of    e    with coefficients being trigonometric 

sums  in the multiples  of    i,     the functions    1/r3,    e2cos 2f/r3    and 

e2sin 2f/r3    present   the d'Alembert characteristic   (Brouwer and Clemence 

1961).    Therefore,   if we  introduce the mean distance 

F = : + K 

to  the ascending node, we  can  observe  that  the power series 

gMif±2£)  =    VeJVA        in(k;+2F) 
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whose  trigonometric arguments are not    l    and    g    but    I    and    F   presents 

also the d'Alembert  characteristic,  i.e.,   the summation index    k    satisfies 

both  conditions; 

k|   < j. k  = j  (mod.   2) . 

We  complete  the expansion of   3i     by observing that 

cos  T.  -  H/O =   (H/Dd-e")   \ 

thus making use of  the binomial series  to develop    cos  I    in powers of 

e.     Eventually trivial manipulations  of power series   in    e    will 

bring  3i,     In  the form 

3i,  = u''R2L~t' V ej 

j>0 
Ä,   .      +^   .     (H/L)2 

.    1 .J .0 1 »J »2 

where,   for any    j  _ 0,     the coefficients   Jf    . and   31    , are 

finite sums of cosine  functions with arguments  of  the   type    p£ + 2kF, 

the  multiples    k    and    p     satisfying  the conditions 

k - 0 or  1, |p!   1  j, p   -  .1   (mod.   2). 

To Illustrate  the development, we have edited in Table I  the results 

up   to  degree  5   in    e     obtained  by  computer.     We have  omitted  the  factor 

.."RV11  = n'V(R /a)2  = n--R:. 
e e •'. 

The  various  trlRonotnctric  arguments  are entered  in  Column   1;   the  cosines 

are  multiplied  already by  the  smallest  power of    e     compatible with   the 

d'Alembert  characteristic.     Then  the second column  lists  the principal 

parts  of   the  coefficients,   the  next  column   the parts   of  degree  e2,   and 

so  on. 

»..■. ».-■■»..■—->*w.--i-v——cirx amaaaL ■-•• ' i— ■      -.* . ■■>.« 
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Table  I. Expansion of  the Perturbation Potential   3ii 

e^ e4 

Ind.   term 1      3    , 
4 - 4 n- 

3      15    o 
8 "   8   n 

5 _ 105 n2 
3?       32 

cos 2F -Mn2 
4      4 

15      9    2 
8'-  8 rr 

. 39 . 165 n2 
64       32 

e cos  £ 3 9        n 
7 - 7 n- 4 4 

19 _  153    2 
32        32    ' 

e cos(H-2F) 21 ^ 21     2 
"   8   '    8n' 

369       201    2 
64        64 

e cos(£-2F) 3      3     o 
8 " 8  ^ 

-   3  - 21 n2 

64      64 

e2cos  21 9      27    2 

8 "   8' n i-^ 

e2cos(2]i+2F) 51 ^ 51     o 
"    R   '    8"n l-f-^ 

e?cos(2l-2Y) M I  S SING 

e3cos  2,1 53 + 159    2 
32       32   n 

e3cos(3il+2F) 
845   ,   845     -> 

"   64  +   64    ,r 

e3cos(3£-2F) 1          1       2 
' 64      64 n 

e^cos hi 
77      231     ? 
32       32   " 

e1,cos(4."+2F) 
1599 . 1599    . 

"    64    '   64    ,f 

el,cos(4£-2F) 1   x   1       2 
"  32 + 32  rr 
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As we shall see later, the theory of satellites depends vitally 

on the fact that the expansion of 31. does not contain the argument 

2g ■ 2F - 2£.      This is proved to be the case by computing that 

The d'Alembert character we just emphasized will also prove quite 

useful.    Indeed the perturbation algorithm we are going to use will consist 

exclusively of Poisson brackets,  formal quadratures and averagings 

involving seties  that will all derive from   3( .      Bat the algebra of 

series having the d'Alembert characteristic is  closed    for these 

operations.    Thus by checking that the initial input   31     has this 

character, we make certain that  the for: ,\lism will produce only functions 

having the same character.    In particular, we do not have to make provision 

for negative powers of the eccentricity. 

3.      Elimination of the Short Period Terms 

We propose to build a completely canonical  transformation from the 

osculating Delaunay's state coordinates    {£,g,h,L,G,H)     to new coordinates 

U'fg'.h,,L,,Gl,H,)    such that,  in the transformed Haralltonian, the 

variable    £'    becomes ignorable.    We want the transformation in power 

series of    J  .      To this effect we shall use the perturbation technique 

based on Lie transforms  (Deprit  1969) 

As we propose  to truncate  the development after    J^,    we need only 

to fill in the triangle 
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<]/0 

31 ] 3tc 

3l0
2 X\ »2o 

q/O (v 1 «j/2 nr^ 
JI3 »n2 v« j Jig 

(vO «rl «a/2 <«/3 I/14 

Ji^ Jij Jl2 ™ 1 ^O 

The last line is to be computed in anticipation of the long period 

elimination that we shall execute later on. 

We enter the triangle by putting 

31 Q  ■ Äp(-)-,-,L ,-,-), 

»5 -^a'.g'.-.L'.G'.H'), 

31° m 0 for n i 2. 
n 

Let  us indicate by 

^•,J',     la?     8L'     31/     3äV
+
 lag'     SG'     an'     sgV 

Uh'  aH'   SH'   ah'/ 

the Poisson bracket of the functions  $ and ijj in the phase space 

(«,'.g'»h* .L'.G',!'') . The calculations of the Poisson brackets require 

in the present case some attention. We have to deal with functions whose 

list of arguments are formally 

L'.e'.HV.g'. 

Thus,  on one han'l, because  the variable    h'     is  ignorable  in both     ;     and 

i|/,     the  calculation  of     (4iJ^)     will  reduce   to  the   first   two Jacobians.     On 
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the other hand,    L'     appears in two places,  among the explicit variables, 

but also implicitly in    e',    whereas    G'    appears not among the explicit 

arguments but only implicitly in    e'.    Therefore by differentiation in 

chain we have  that 

1^ . li, . iel . _ ikVii4 
(8,) 3G1       ae1       30* LV       * vol 

SL'       UlVe' +  ae'       91'       VaL'/e' L'e'     * ^2'' 

The square root nppearing in    a^/ac'    will of  course be replaced by its 

binomial expansion in powers of    e'.      Assume  that  the  functions    $ 

and    IJJ    have the d'Alembert characteristic we already mentioned;  then 

the above formulas indicate that their partial derivatives with respect 

to    L'     and    G'     lose  this characteristic, and worse yet,   contain terms 

in    e'     .      Nevertheless,  the Poisson bracket     (tyiii)    retains the d'Alembert 

characteristic  (Brown and Shook  1933).    For in  the course  of calculating 

the Jacobians 

a^   ait»      a^      a^        .   a^      a^      a^      a^ 
ai' ai' " ai' * an'   and   ag' * ac' " ac' * ag' 

the terms in e'   cancel one another.  If the programming techniques 

for manipulating literal expressions by computers enable one to process 

polynomial variables with negative exponents—such is the case for MAO 

(Rom 1969)—it is relatively easy to write subroutines that will Implement 

the partial differentiations  a/aC, a/aL'  as written in (8,) and (8„) . 

Then the natural cancellation in the Poisson bracket  (^jij1)  of the terms 

in e'   may serve as a check on the validity of the coding while in 

-—-——**—. 
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the initial phase of debugging the program, and as a test of the absolute 

accuracy on the coefficients obtained as soon as the program becomes 

operational. 

Notice that for any function $(£'.g1,h',1/,0'.H1), 

ÖfJ;*) = -u-V^O*/^'). 

After these preliminaries, we outline the operations that accomplished 

the elimination of  the short period  terms. 

Ordej: 1^.        The basic Identity being 

»5 + O^Wj) -äJ. 

we selected 

Then putting 

^0   '^iV' 

rt)      = «jrO    _ «1/ 
1 

we obtained the generator Wj by the quadrature 

/ 

Averaging and quadrature  are  two operations  simple   to program in MAO's 

language.     The average  of  a  function     ^    periodic  in     ''     is  obtained 

by transferring from the Poisson series    s'     into  the Poisson series 

< ■! ^   the terms whose  trigonometric argument does not  contain    ''.       Then 

the  terms  left  in     tf     constitute  the  properly  periodic part  of     t;     let 
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us call it 2*.  As ;? contains no constant term, the quadrature 

;_' 

is a Poisson series having the same   type as   T.       A term like    cos(pl'+a) 

of    T   is transferred into    W    as  the  term    (l/p)sin(pil,+a) ;  similarly 

a term like    sin(p£'+a)     of   3»    is  transferred into    W    as  the  term 

(-l/p)cos(p£,+a).     Table II  lists  the development  of    W    up  to    e5. 

The final  result is  a first order generator of  the form 

Wj   -- WjU'.gV.L'.G'.H'^.u) 

=  .^^L''3 I e,j[W     .    +W     .     (H'/L')2] 
e .>0 l.j.O     1,J,2 

where, for any 1 > 0,  the coefficients W  ,   and W      are finite 
1,J,0 l,j,2 

sums of sine  functions  in  the arguments    pi' + ZkF'    with    k ■ 0    or    1 

and  the d'Alembert  characteristics     |p|   ^ J,    P   -^ j   (mod.  2).     As  for 

the  first order component   3(1    in  the averaged Hamiltonian, we obtain 

3ll      JfJC-^.-.L'.C'.H^R   ,u) 

^■'b^M.i.rt,u>w,'l')lu 

where,   for any    j  2 0,     the coefficients   Jf1 and   Tf1   . are 
0,j,0 0,J,2 

purely numerical. 

Incidentally,  until we  reached  the end products of the transformation, 

we decided to keep explicitly among the polynomial symbols of our Poisson 

series  the quantities     u    and    R ,    thus not  availing ourselves  of a 

natural system of units   like  the Vanguard units   to render dimensionless 

Delaunay's action momenta.     Indeed it proved useful  to constantly monitor 

*■■■•->-■■ ■ ■ ■  
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Table II. The  first  order generator    Wj 

(The expansion must be multiplied by    w R'1.'     ) 

e'2 6,14 

sin 2F, 

8      8 n 
15  -   9   -,'2 

|      16      16   ] 
!         39 

128 
33     ,.    I 

■  128 n 

e'sin  i* 
4      4 n 

27--153
n.2 

32        32   ' 
261 
256 

2007      2 

"     256 ri 

elsin(i,+2F') 
8      8 n 

1      123      67     ,2 

64      64 n 
489 
512 

47     , 
■ 512 n 

e,sin(ü,-2F') 
8      8 n 

3+21n'2 

64      64 n 
1 

1024 *mA 
1    e,:sin 2^' 

16      16 n 
7        ,   ,2 

16  -  3n  ' 

e,^sin(2i,+2F,) 51   +   51   n»? 
■   32   '   32 n 

115 - V2 
32       "n 

!    e^sin^'^F') MISSING 

e,3sin W 53      53    ,2 

96 "  32 ri ' 
131      1241     ,2 
512        512 n 

j   e,3sin(3i,+2F') 1)9      169     ,, 
34  '    64 n 

6505      3801     ,, 
1024      1024 n 

|    e^sinOü'^F') 
64      64  n -     11     1     27     r,'2 

1024       1024    ' 

j    e,l4sin 4^' 77 _ 231       2 
128      128 

j    e'^sin^^F') - 533 + 533     ,2 
128      128 

e"*sin(4;.,-2F, 1.1       .2 
-64+64n 

I 

el5sln 52' 1773      5319     ,2 
2560      2560  n 

e,rsin(5.'+2F') 32G..1      3^1    ,; 
5120        5120 n 

e,ssin(5:,-2K, 81    .     81       ,o        | 
' 5120      5120  n 

1 
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Table III.   Ihe second order generator W2 

- 7 
(The expansion must be multiplied by y^R^L'  ) 

e'2                         | 

sin 2?' J. + in.2 __Lr..+ 
16      8 n           16 r 

459       705     ,2       2457     ,J 
128         32  n             128 ri 

sin 4?' 1        3   _    3    n'2   _    3       ,1( 
64      32 n          64 n 

i         3 ^ 21     ,0        9       ,„           | 
" 8 + 32  n      -  32  ri 

|     e'sin £' 39 +   9      .2  .  777       , 
128      64   '           128   ' 

!     e'sin(i,+2F,) 85      33    ,.   .   179     ,u 
64 "   8   n  ^ +    64  n 

e,sin(4,-2F,) 45 _ 135     ,2 +225       . 
32         16   '             32  n 

e,sin(e,+4F') 15 .    15     ,2 + 15     ,. 
64      132   '           64  n 

i     e'sinU'^F') 9         9      1?   .     9       ,u 
128      64 ''           128 n 

e,:sin 2i' 105        63    ,?       1227    ,u 
256      128 ''             256 n 

e,':sin(2^,+2F,) 459      891     ,?   .   1323    ,K 

128        64  "             128 n 

|     e^sinUJl'^F') MISSING 

|     e,2sin(2^,+4F,) 189      189     ,7 

256      128 n 

e^sinCai'-AF') 128      64   '           128  n 



-25- 

where, for any i - 0. the coefficients W . , W .   and W  . 
'      J 2fji0        2»J»2 2,j,4 

are  finite sums  of sine functions in the arguments    pi' + 2kF,    with 

k - 0, i or 2  and the d'Alembert characteristic    |p|   i j.    P  = J   (mod.  2). 

The second order part ^    in the averaged Hamiltonian is of the type 

3*2 -^(-.g'.-.L'.G'.H';^.^ 

-^ReL'-10Joe'^2)j>o^)j>2(H./L')2^)jt4(HVL')M 

where,   for any    i  10,    the coefficients   !Xo j 0' ^  j   2    and   ^0  j ,4 

are sums of cosine  functions  in  the argument    2kg'    with    k ■ 0 or 1. 

Ordejr j}-        The element   af1    in  the  triangle can now be completed;  thus 

we compute 

We begin  the calculations  at  order 3 by putting   W    ■ 0,    and we  compute 

under this  assumption the elements  in the  fourth row of the  triangle: 

ml
2 -^ + Ö^jw^ + 2C^;W2) + ^;w3) - 2öf0

1;W2), 

Then we treat the differential Identity 

^ + 0^3) -ml 

as we have already done  twice before,   ^f3     takes  from  jf3     the  terms 

Independent  from    2';    then,  if 

-St   _ c^3 

■■MI ...    — 
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Table IV. The third order generator    W3 

(The expansion has  to be multiplied by    ii6R&L'~ 

|   sin 2F' 
471       8757    .o       30741     ,u   .   22455      r 

1024       1024 "             1024  "             1024 n 

sin AF' 

I 
147       1905    ,?   .   183     .u       1317    ,fl 

128         256 "             16  ''             256 n 

sin 6?' .    27           81       ,2 _    «1    ... +    27      ,f)        1 
1024       1024 "           1024  "           1024 n 

e'sin i' 
3       8691    ,7   ,   12051     ,u       21759    ,fi        i 

52         128 ''              64    ''             128     ' 

\   e,8in(^,+2F,) 65       10369     ,0      57677     ,,.   ,   47243      p, 
512         512    "             512     ''             512    n 

e'sinU'^F') 1089       8973    ,7   .   17163     ,1.       9279    ,R 

256         256 ''             256     l!             256 n 

e'slnCH'+AF') 17367       122319       192357     ,,.       17517      ,     1 
2560  '     2560          2560    n             512    " 

e'sinCi'-AF') 1601       15133     ,0       2-463     ,k       11931     ,,- 
512        512    ''             .12     '              512 

e,8in(Jl,+6F,) 27   .     81    ,2         81     ,u         27     ,,,                1 
128       512  "           512  n        '  512  n                     j 

e'sinC^'^F') _    27         81    ,2  _    81      ,         27     ,6 

512       512   '           512    '           512    '                     i 

J 
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Table V.   Recapitulation of the Hamlltonlan .iveraged 
over the short period angle and of the 
generators of the averaging transformation. 

*' 

W 
1 *; 

W2 *0 
W3 

... 

3f0 W. ^0 

e.o 4 2 ^ £ 6 3 12 4 20 5 

8,1 6 6 0 15 0 28 0 45 
0 i 

e'2 8 6 2 18 6 36 8 60 10  | 

e'3 12 12 0 29 0 56 0 90 
u 1 

e" 
14 12 2 30 b 60 1?. 100 15  1 

e'5 18 18 0 45 0 84 0 135 o 1 
e.6 20 18 2 45 b 84 12 140 20  1 

e'7 24 24 0 60 0 112 0 180 
1 

U 

e.8 26 24 2 60 6 1L2 12 180 20 

le,y 30 30 0 75 0 140 0 225 o ! 
1 

1 e'10 32 30 2 75 6 140 12 225 20  I 

L.ll 36 36 0 90 0 168 0 

e.12 38 36 2 90 6 168 12 

L.13 42 42 0 105 0 

e'14 44 42 2 105 6 

L.15 48 48 0 

L.16 50 48 2 
| 

Total 452 444 18 848 45 1200 72 1400 90  | 

 J 
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we determined Jf1!    by passing to it  the terms of   3flj     that do not 

depend on    £'. 

The constructions we  jast  outlined have been  implemented automatically, 

using MAO as algebraic processor.    The development  of   31.    in power of    e 

had been  truncated after  degree 16,   for no other  reason than to set a 

limit.    At each order of  the elimination,   two degrees  In    e    are  lost 

through the differentiation with respect  to    G*     Involved in the Poisson 

brackets.    This way we know   Jf^    up to    e16,    but  3{^    up to    e1"4, 

3$    up to    e12    and  3^    up to    e10    only.    By listing the number of terms 

in the various components  calculated so far. Table III purports  to suggest 

the size of the programming chores and how fast the elimination gains in 

complexity as the order Increases. 

4.       The Elements  of the Short Period Elimination 

The generators    W  ,  W«, W3    determine  a completely canonical   trans- 

formation from the osculating elements    u ■ (£,g,h ,L,G,H)    to a new set 

of variables    u*   (£',g'»h*,L'»G1.H*),    the equations being of the   form 

u « u' + J.uJU')  + j J2u2(u') + | J2
3u0

3(u') +   ... 

Since  the coordinate    h1     is ignorable in  the generators, 

H - H'. 

On  the other hand  the partial  derivatives  of the  generators with  respect 
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to    L'     and    G'    do not have  the  d'Aiembert characteristic in reference 

to the pair    (e'i*);  as a matter of fact,   they will   contain negative powers 

of    e',    which is a reflection  of  the fact  that,   for circular orbits, 

the direction of  the perigee  is  undetermined.     But  such  divisors do not 

appear in  the developments   that express  the mean distance   to the ascending 

node 

F -   C  + g 

and the state functions 

C ■ e  cos  g, S «= e  sin  g 

in  terms  of the new variables     (i.'.g'.h',L',G',H').     Therefore we propose 

to calcu!.Jte the ephemeris  of  the satellite by means  of   the following 

elements:     F, h, C,  S,  L and H.     For a] 1 of  the,!, except   the  iasi one, we 

have obtained their expansions  in powers of    J   ,     the  coefficients  coming 

in power series of    e'. 

We  review here  the  formal  characteristics of   these series;   the sta- 

tistics  of Table VI make  it plain that we  cannot   think  of  reproducing 

them in print.    For the sake of brevity, we have put 

n'  - H'/L'. a'  - a'/R . 
£ 

Also  the  upper  limits mentioned  in  the signs  of sunmation  are merely 

anecdotic;  these are  the  degrees  of the eccentricity    e'     after which w 

have  truncated the expansions. 

a)     The mean distance    F    to the ascending node 
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F = F'+J2a'-
2F;+|j2a.-V4j23a'-

6F', 

F
; = 1 e,jtF; j o+F,i i 2*,2i* 

F«   =       J    e,j[F'    =     +F'    .     ri^+F' n"4], 
0<7<i2       ^J'0   2,j,2       2*i^ 

K  =       /L    e,^F^   4     +F^   1   V2^   4   .n'VF' n'6]. 

The  coefficients    F* ,  F' ,   ...,  F' are  finite sums of sine 

functions in the arguments    pi?.'  + 2qF'    such  that  in    F'      . ,    we have 

the  conditions    O^qir,     |p|lj    and    p  ^ j   (mod.   2). 

b)       The longitude    h    of  the  ascending node 

h - h' + n'Uv-'"2^ +7 j22a''\ + I J20,'6h;). 

h,i "   S  e'jh; 
0<j<16 ,J» 

h! =      >    e'^h'        +h,        n'2), 
2      0<j<14- 2,J'0     2ti'2 

h^ '      I    e'j(h' +h' n'2+h' n'u). 
0<i<12 J»J»U     ^»J»- 3,j,u 

The  coefficients    h'   .     , h'    .     ,   ..., h1   , are  finite sums of sine 
l.j.O        2.J.0 3.J.^ 

functions in the arguments    p£'  + 2qF'    such  that  in    h'      . ,    we have 

Olqir,   [pj  ^ j    and    p  :   j   (mod.  2). 

c)       The scalar    C = e  cos  g 

C -  C  + J.ü'"2C'  + j J2a,"',C; + i j3a'"6C' 

c; =   Z e'^c     +c; . y-), 
0<j<14 1.J.0     ^J'2 

utt^MUOMi 
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The coefficients     c;>j>0.  C;j>2 C'J>(.     are  finite sums of cosine 

functions  in  the  arguments    p^ + (2q+l)F'     such   that,  in    C^.^    we 

have    0  < q i  r,   |p|   1  j,  P  - j  (mod.   2). 

d)      The scalar    S « e sin g 

s.s'+v-2s;+i^s'+ij3u'-V. 

S'  -      y    e'^S'    .    +5'   ,    n'2), 
1      0<jll4 UU0     1•j•2 

S3"oloe,J(S^J-0+S^^2n,2+^^^,4+S^J'Gn,6)" 
The coefficients    s;>j>0.  S;^^ s;j>6     are  finite sums  of sine 

functions  in  the arguments    pi' +  (2q+l)F'     such   that,  In    Sj.^^ 

have    0<q<r,   |p|   ^j.pj   (mod.   2). 

e)      The action    L 

L-L'(l+J2a'-2L;   +±Jla'-kL'2+±jy-&L\), 

S-      2   ^^M.j.o^'i.j^n'2). 
0<j<16 ,:,, J 

we 
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The coefficients L' .  . L' . „, ..., L'     are finite sums of cosine 
1 »J »0    !»J »^ i*J tb 

functions in the arguments pJi' + 2qF, such that, in L'  ,  we have 
r »J i«1 

O^q^r,     |p|   Ij     and    p  = j   (mod.   2). 

Given  the values of     F', h',  C',  S',  L'     and    H'    at an instant     t, 

the preceding series enable us to evaluate   the corresponding functions 

F,  h, C, S,  L and H    at   that instant  of time.     Indeed the decomposition 

pi'  + 2qF,   =  aq+p^'   - pg' 

implies  that  in  all  the  coefficients,   the elements     e'     and    g'     enter 

only through polynomials  in    C'    and    S'.     For instance,  a term like 

e' ^cosO^'+AF')     can be evaluated as  follows: 

e,r>cos(3fV+AF1) = e'-'Ke'^'cos  3g,)cos   TF'+Ce^sin  3gl)sin  71' 1 

wherein 

e'2   - 0'°  + S'-, 

e,3cos   3?'   =  AC'3  -  3C', 

e'^sin  3g'   = S'CAC'2-!). 

Thus nowhere is it needed to evaluate separately the eccentricity e' 

and the argument of perigee  R'.  In sum, as far as the short period 

perturbations are concerned, the above series overcome entirely the indeter- 

mination in the direction of the perigee which is inherent to circular and 

almost circular orbits. 

- • • —«-■«'■ 
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Table  VI. Rocapitulation  of   the  series necessary  and  sufficient 
to evaluate  the short period perturbations 

AF' Ah' AC AS' AL' 

0 
1 

■> 

3 
4 
5 
6 

7 
8 

9 
10 
11 
12 

13 
14 
15 
lb 

2 

6 

6 

12 
12 
18 

18 
24 
24 
30 
30 

36 
36 

338 

1 
3 
3 
6 
6 
9 
9 

12 
12 
15 
15 
18 
18 
21 
21 

21: 

4 
6 

12 
12 
20 
20 
28 
28 
36 
16 
44 
44 
52 
52 
60 

54 

6 
12 
12 
20 
20 
28 
28 
36 
36 
44 
44 
52 
52 
hO 

454 

6 
6 

12 
12 
18 
18 

30 
iO 
36 
36 
'. ■) 

42 
48 

_48 

. i4 

0 h 4 9 9 9 
1 15 10 18 18 15 
o 21 13 27 27 24 
3 30 19 36 36 10 
4 36 21 45 45 39 
5 45 30 51 51 4 5 

6 51 31 63 63 54 
7 60 40 69 69 60 

8 66 41 81 81 h9 
9 75 50 87 87 :r> 

10 81 SI 99 99 C'-. 

11 90 60 105 105 tin 
12 96 6 1 117 117 99 
13 70 105 
14 .   . 71 ..   , ., _.  m 

672 5 72 80 7 807 9 12 

0 12 if 16 16 K. 
1 28 21 $2 32 28 
■> 40 30 48 48 4-t 
3 56 42 64 64 56 
4 68 51 80 80 72 
5 84 6 3 'Hi 96 84 
6      ! 96 72 112 1 12 10(1 

7         | 112 83 128 128 !12 
8 124 92 142 142 128 
9          j 140 104 160 160 140 

10 152 114 175 175 151) 

11 125 168 
12 135 1 84 

91. 941 1053 1053 128S 

Tot a 1 1921 1730 2 314 2 31 26 J- 
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5.      Initialization of  the Elements    F', h.   C't S't L' 

After the short period terms have been eliminated,   the Hamiltonian 

becomes  the  function 

31'   --^(-.R'.h'.L'.r.'.H') 

-^+ j^;+1j^+ ij?*:+ A 'X (9) 

with 

0 0 
Än       ji.l

-»-»-»L   »"»"J   "   —   ^   t'2    ' 

3i\ ^^(-.-.-.L'.cMi') -3£i, 

3^ »^(-.g'.-.L'.G'.H')   =3^   . 2 1 k < 4. 

Now  that     ;'     is   ipnorable in   the  transformed  variable,   the action     L* 

turns  out   to be  an  integral. 

On  one hand,   through  the elimination  of  short period  terms,   the  solu- 

tion of   the Main Problen reduces   to  integrating  the Hamiltonian  equation.-; 

generated by   (9)   and   composing  their solutions with  the equations  of   the 

canonical  normalization.    On  the  other hand,   the initial  conditions  determine 

the  initial values  of  the elements     'r,  h,  C,   S,  L and H,     but not   of   tin 

transformed elements.     Therefore,   to  insure   that  the solution  in 

d ' ^V ,h ' ,1/,0',11')     corresponds  chroup.h   tiie   transformation   to  the   initial 

elements     (F  ,h   ,C   ,S   ,1.^ ,H) ,    we  must  provide   the way  of   determining,   the 

initial   values  of   the   transformed elements     (F ' ,h ' ,C',S',L',H).       In  a 

Calculus  of Perturbations based on  Lie   transforms,  the  initialisation  of 

the transformed variables is accomplished by  constructing explicitly   the 

inverse mapping,  or  rather the generators     (.V|,V>,V:)     of   the  inverse 
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mapplng.     As  it was established elsewhere (Deprit  1969),  at   least up 

to the  third  order,  they  result   from these straightforward  operations: 

Vj V^.g.-.L.G.H) = -W^.g.-.L.G.H), 

V2 = V2(e,g,-,L,G,H) = -W2(£,g,-,L,n,H), 

V3  - V3(lltg,-,L,G,H)   =  -Wj  -  (W^Wj). 

As we  did in  the  case  of  the  direct  transformation, we by-passed 

the  explicit   construction  of  the inverse  transformation  itself,   for  the 

equations expressing    i'     and    g'     in  terms of    x,,  g,  h,  L,   G, H    will 

involve negative powers  of    e.     Instead we addressed  ourselves directly 

to the  task of expressing the elements    F', h',  C', S',  L'     in  terms of 

F,  h,   C,  S,   L.       These expansions  have   the same   form  as  the  ones  described 

in  the previous section  for the direct  transformation.     Inserting in these 

series   the   initial values    F«, hp ,  C;i,  S0, L0    and the value   for the 

integral    H    would then provide  the initial values    FQ , hi,   GQ ,  Sg    and   th 

value of the  integral    L*. 

6.       Elimination of the Long Period Terms 

Following  the main steps  of  Satellite Theory  as  outlined by Brouwer, 

we now consider constructing a completely canonical  transformation  from 

the variables     U'^ .h',1'^ .H')     into the variables     (■ " ,g" ,h",l ",(;" ,H") 

to the  effect  of rendering  the angle    g"    Ignorable  in  the   transformed 

Hamiltonian. 

The construction  is  again based  on determining  the   transformation 

generators     i   .  I  ,   ;   ,     and so on.     Thus entering a  triangle similar to 

the one  displayed at  the beginning of Section  3, we put 
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!wO(£^g^-.L^G^H,,) -3^a".g,,,-.L",G",H") 

Order 1. The differential identity 

^ + K'*^ -*ä 
is  satisfied by  putting 

and by  requesting that 

sij/ajc" = o, 

or that  ;   do not depend on  £". 

According to what we observed in Section 3, 

= u^V'^le"^^}   .     Ml   ■     (H'VL")2]. 
e   r;0 ^,2^     0,2,.: 

Consequently 

The program has been set  up  to expand     (1-e")2,  to multiply   this binomial 

development with   the explicitly written power series  in    e"- ,     and  to 

bring     lj^/^n"     in a power series  of  the form 

•••■- ■   ■ —■   -^—^~.t   — ■ -■ 
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where 

^ 
aG^- D(L".G",H")   -   SMUVL""^ 1+    lA.e,,j 

J>1  2 

H"2 

A -  1  -  5 py » 

and,   for any    j - 1,     the coefficient    A.     is  a polynomial in    A    and 

H"/L".       By introducing    A    as  a symbol in the  list  of polynomial variables, 

it becomes  feasible  to expand  1/D in power series  of    e"    and,  as  a matter 

of  fact,   this artifice makes   this inversion quite an elementary operation 

for an automatic processor of Poisson series  like MAO.     The power series 

1/D    plays an essential  role at  the subsequent  orders  in  the elimination 

of   the  long period  term. 

Order 2. The element 

3i\ '3f2 + ötfj;^) + Vf0;*2) 

reduces  to 

3l\ -3f° + O^;^) 

if we assume that 

3f2/3£" » 0, 

i.e.,  if we select  for the second order generator    <I>      a  function  that 

does not  depend explicitly on    I".      Consequently 

Ä2 -Jfj + CWj;^)  -3^ + 20^;^). 

This  relation constitutes a differential  identity  in the unknowns   3t?
n 

and    (K .       We can satisfy by selecting for 3£2     the average of 31®    over 

the  angle    g", so that 
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*2   ,Ä2(.,.,-,L".G",H")   -<^>g,t, 

by assuming that 

30  /ah" - 0, 

so that  the identity reduces   to the quadrature 

Hi     11'). 

The  results of these operations  are, on one hand  for the transformed 

Hamiltonian,  a second order component of the  type 

ml  ' M^V'"10 Ie"2JCw2   .   n-Vi   .    (H'VL")-©^   .     (H'VL")1*] 

and,  on  the other hand  for  the canonical transformation,  a first order 

generator of the type 

(H'VL")2^ i    - U2R2L""38in 2g" lA"je"2j     I     *    , . ' 
e j>l 0ik<j+l   i»J,K 

Or^e£ ^. Entering the fourth  row of the  transformation  triangle  for 

3f' ,    we meet  the element 

Assuming that 

9(t>3/3i,"  - 0, 

we reduce it  to the sum 

*•*•"- •-'  - 
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We  isolate in it  the part yet unknown by putting 

so that 

ml -3E + 20^;$,), 

The partial element   ji\    ^s  to ^e computed whereas  the Poisson bracket 

Ofli\)    is set  aside  until    4>0    has been determined. 

We treat in  the same way the elements 

By putting 

so that 

»2 -^ + 3««;^), 

we  isolate in them the parts that we are  able  to compute and isolate  the 

Poisson bracket.     In   fact,   the relation 

3*0
3   + 30*0JO -ä3 

constitutes a differential identity to be satisfied by the unknowns 

J 
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31*    and    $2. 

As we have done  repeatedly, we propose  to take for   31^     the average 

of   5£3     over    g"»     and while we assume  that 

9$n/3hM - 0, 

we  obtain    ;       from the quadrature 

These operations produce, on  one hand for the averaged Hamiltonlan,  the 

third order component which  is a series  of  the  form 

Xl - ,W'-1" 1 A'je"2j      V    Ä3 (H'VL")211. 
0 e j>0 05k<j+3 0,J,K 

and,  on the other hand  for  the canonical  transformation,   the second order 

generator 

U -  ^RV^rJ'V^     V      a (r7L")2k, 
e      ill 0<k<j+3    •J' 

the coefficients  -j     being finite sums of sine functions in the argu- 
2 » J i K 

ments    2pg"    with     1   < p  < Mln(1,2). 

Ordej ^.        Before computing the fourtli order row in the  triangle, we 

complete the elements  of the  third order: 

^   - ^-^-W- 

Til mmmgi^^ggaimama^jm^^mag 
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and arrive at the decomposition 

:wj »afj + 40*0 ;*3). 

Finally,  by  introducing 

we  are   led  to  the  differential  identity 

5£j + 4C^;t3)  -^. 

.L.nce,   after transfering into   Sf1!    thv terms of   Jf1*     that  do not depend 

on    g",    we perform the quadrature 

^T7 " Ä DÖ?o'9fO) 

to obtain  the  third  order generator of the canonical  transformation.     This 

is  a power series in    e"2    of the form 

*    _ .r-RtV-11 V/-J-2p..2j     v     $ (H"/L")2k 

whose  coefficients     •     i  i,    ^^re   finite sums  of sine  functions in the  argu- 

ments     2pg"    with     lip-  Min(j,3). 

We enlist   in Table VII  the number of terms  contained  in  the result 

series   obtained so  far.     This  summary  indicates  how  the elimination  of 

short period  terms  has simplified to a very  large extent   the  further 

reduction  of  the Main Problem.     But   the  reduction has been bought  at   the 

expense  of more sophisticated  manipulations  in  the  construction  of   the 

' •• -'~ 
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now completely normalized Hamiltonian. 

Table VII. Recapitulation of  the Hamiltonian averaged 
over the  long period angle  and of  the generators 
of  the averaging  transformation 

«i ♦l 
0 ö 

T  i 3tQ *3 < 

e"0 2 0 3 o 4 0 5 

e"2 2 3 3 5 5 7 7 

e"1* 2 ^ 3 12 6 16 8 

e..6 2 5 3 14 7 27 9 

e"8 2 6 3 16 8 30 10 

e"10 2 7 3 18 9 33 U 

e..12 2 8 3 20 10 

e"lU 2 9 3 

e"16 2 

Total 18 42 24 85 49 113 50 

7.      The Elements  of  the Long Period Elimination and Their 
Initialization 

The  generators  of  the  transfon-ntion   from     (J' ,g',h',L',n',H') 

to    (r,g",h",L",G",H")     do not  depend  on  the  angles     ."     and    li"; 

hence  the   transformation does not   change   the  actions    L'     and    H': 

thus 

L'  =»  L" anc 1 H'   =  H". 

In  order  to  avoid  the presence  of  divisors   in    e",     we  do not   deter- 

mine  the  transformation   through   its equations  expressing     ■',   g',  h' 
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Table VIII. Summary of  the long period corrections 
to    F', h', e'cos  g'     and    e'sin g' 

J-""2 e" LFn Ah" AC" AS" 

1 
1    1 0 0 0 3 3 

2 4 3 8 8 
4 5 4 10 10 
6 6 5 12 12 
8 7 6 14 14 

10 8 7 16 16 
12 9 8 18 18 
14 9 . _^_ 

39 42 81 81 

2 0 0 0 5 5 
2 6 5 12 12 

| 4            | 14 12 21 21 j 
6 16 14 24 24 i 
8            j 18 16 27 27 j 

10 20 18 30 30 j 
12 , . 20 

I) 
2 
4 
6 
8 

10 

74 

0 
8 

18 
30 
33 

89 

85 

0 
7 

16 
27 
30 
33 

113 

119 

7 
16 
27 
40 
44 

134 

119 

7 
16 
27 
40 
44 

T34 

Total 202 140 3 34 334 

mm MKOU ■^M 
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0ijv6 0-kiJ+3   1'i'J'K 

Instead of integrating  the  differential equations  in    l"    and    g", 

which   raises  for the  initial   conditions    Z"    and    g'J     the problem of 

divisions by  the small eccentricities    e0    and    ej,    we  determine  the 

elements     F",  C",  S".       Thus   the  integration of the secular part of  the 

Main Prob lern results   in  the  following  formulas: 

F" =  ." + g" -   (Vj+vJCt-t^  + F^', 

C" = e"cos g" = C^'cos v2(t-t0)   - S^'sin v2(t-t0), 

S" - e"sin g"  «  s;:cos  v,(t-tn)  + Cjjsin  v2(t-t0), 

h" =  v,(t-tn)  + h" 
i u V 

9.       Computation  of   the Coordinates  and Velocities 

After the series   for the direct and inverse  transformations eliminating 

all periodic  terms have been obtained, we  are  in a position  to compute at 

any  instant—within  the  time   interval  of validity of  the theory—the position 

and  the  velocity of  the satellite  from coordinates  and velocity components 

at   an  epoch     t  . 

Given     (xp.Vi.z.x   ,y   »z,,),     the  Initial   values  of   the elements     F0, 

hf, ,   Cj,   S   ,  L,,  H     are  determined   from the   following  system of  formulas: 

The  components  of   the  angular momentum beinp 

A'   =   yi^Z^    -   ZnV'  , 

B    =   Zr\r,   -  x^'zr, 

H" Vu - v.,« 

we   compute   its norm  at     t,. 
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Go /A^  + B2  + H2, 

so  that   the trigonometric  relations 

Ao " Go sln Io sinho' 

B0 - -GQ  sin IQ  COS hg, 

H « G0   cos  I0 

determine  unambiguously the initial  longitude    h-     of  the ascending node 

and  the  initial inclination.     Next we rotate  the coordinate axes so  that 

0"     and    On     lie in  the orbital plane    n(t0)    with    0C     coinciding with  the 

ascending node at  the initial  instant    t  .     In  this  frame of reference, 

the initial  coordinates and velocities of  the satellite  are 

C0 - xo   cos h0 + y0   sin h0. 

no * ('xosln ho+yocos ho^cos I
0 

+ z
0 

sin Io» 

'0 ■ x0   cos h0 + y0  sin h0, 

n    ■  (-XpSin h0+y0cos hQ)cos IQ + zQ sin IQ. 

Evidently   the Initial  planetocentric distance  is 

ro *   ^) + %' 

Moreover,   from I.aplace-Hamilton's vector oriented along  the apsidal 

line, we  obtain that 

co " co^o ~  f'orn 
s^ = -Go'n " 'V^1' 

which relations determine the square of the eccentricity 

e; - ^ %■ 

Having evaluated  the quantity 

^^mmmmmm^^ 
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the  initial values    F^, h^,  C^, S^    and the value of  the integral    L*. 

They are  then introduced in  the series expressing    F", h", C"    and    S" 

in  terms of    F*, h',  C',  S',  L'     and    H,    which results  in the determination 

of  the initial values    FQ ,  hg,  CO',      and    Sj,'. 

At   this stage we are  in a position to evaluate   from the series  the 

numerical values of the three basic mean motions    v   ,  V2    and    v3.       This 

ir;   the  last step in the initialization phase of the ephemeris. 

The   calculation of  the position and velocity at any instant    t    follows 

the same line as  the initialization, but in  the reverse order. 

First we evaluate  the  state variables    F", h",   C"    and    S"    at  time 

t     from the simple  formulas  given at  the end of Section 8.    Then the series 

described in Section 7 provide  the average state variables    F', h',  C', 

S',  L'    at time    t,    whereas  the series of Section 4  furnish the osculating 

elements    F,  h,  C,  S, L    at  that instant. 

After the process of evaluating the series numerically is completed, 

we  determine  the coordinates  and components of the velocity  from the 

following system of   formulas: 

Kepler's eauation in   the  form 

.  ■ F + C sin   .  - S  cos  •; 

is  bolved by iteration to obtain the anomaly    i; » E + g.      The eccentricity 

and   the semi-major axis are  computed  from the relations 

e-' = C:  + S:, a - L:. 
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The position in the nodal frame of reference is given by 

C ■ a cos I^I - C + ; (C sin ty~S cos 4»)   , 
L 1 +  /l^2 -I 

n ■ a sin ^ - S ■ (C sin i|;-S cos 0   . 
L 1 j. ,/TZl2 -I 1 + /l-e2 

Knowing 

G - L /l - e2 , r -  /c2 + n2 , 

we can use Hamilton's vector to get the components of the velocity in the 

nodal frame, 

Thereafter, having produced the inclination from the relations 

cos I - H/G, 0 < I < TT, 

we perform the usual rotations  to pass  from the nodal frame to the original » * ' 

inertial frame, and we come finally to the Cartesian coordinates j 

x - ?; cos h - n cos I sin h, 

y-^sinh + ri cos I cos h, 

z ■ n s in I, 

9 
and the components of the velocity » 

r 

x ■ 5 cos h - n cos 1 sin h, 

y ■ j; sin h + n  cos I cos h, 

7      n sin   1 
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10.    Reliability Tests 

While the coding was in development, repeated checks were applied to 

test its correctness.    The series generated by the program were constantly 

checked for their physical dimensions and their d'Alembert characteristic. 

Subroutines  that, in  the parlance of the trade, are called expert,  like 

taking partial derivatives with respect to Delaunay's actions    G    and    L 

or computing a Poisson bracket, have been thoroughly tested.    For instance, 

in regard to the canonical transformation    (£ ,g,h,L,G,H) ■* (£'.g',h',1/,0'.H') , 

we satisfied ourselves  that the Poisson bracket    (Ä.:g)     Is indeed equal 

-12 
to zero, i.e., that the coefficients in the result are smaller than 10 

in relative accuracy.  (N.B. They should have come exactly equal to zero 

had we operated in integer arithmetic.) The general course of a reduction 

by Lie transforms has been implemented on a number of simple examples like 

the simple pendulum, Duffing's equation and the relativistic harmonic 

oscillator. 

The ultimate test of reliability is a comparison of the positions 

and velocities predicted by the series with those of a highly accurate 

numerical Integration scheme. 

We chose to integrate the equations of the Main Problem by recurrent 

power series. All Taylor expansions involved are computed at each step 

through degree 16; the time step is selected so as to maintain 12 significant 

figures in both the integral of energy and the integral of polar angular 

momentum. The procedure is rapid, highly accurate, and stable; it enables 

one to follow for very long arcs the orbit corresponding to a given set of 
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inltial conditions  (Deprlt and Zahar 1966). 

In order to allow comparisons with other prediction methods, we 

borrowed from Bonavito et at (1968)   the initial Cartesian coordinates 

and velocities  they assign for the artificial satellites RELAY II and 

ANNA IB.    Table IX lists  the initial conditions,   the osculating elements 

at epoch,   the corrections to be applied in order to obtain from them the 

constants of the motion as per our theory, and the basic periods. 

We examined the residuals (integration-series)  for the elliptic ele- 

ments selected in our theory.    Disagreements on the inclination    I    and 

in the longitude of  the node    h    are simply insignificant.    As expected, 

the mean distance    F    to the node shows a secular deviation (see Fig.   1). 

For ANNA IB,   the residuals in the semi-major axis suggest a long period 

error coupled with a secular trend;  for RELAY   II,  the presence of a long 

period error is well marked in the element    C.     For all other variables 

presented in Figure  1,  the effects of short period errors caused by 

the truncatures in the eccentricity and    J      seem to mask long period and 

secular tendencies. 

More revealing quantities to evaluate long range reliability are 

the intrinaio deviations.    If   x-, y.., z,  (resp.  x,,, ys, zs)    are the 

coordinates at time    t    furnished by the numerical integration  (resp. 

the literal series,*,  and if    X-, Y.,  Z^   (resp.   X  , Y  , Z.)    are the compo- 

nents of  the velocities,   the directions of the  tangent, binormal and 

normal to the orbit at  time    t    are given by the triplets 

L^k. 
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Table IX.    Constants of the motion for the 
test orbits 

Initial osculating elements 

F (in radians) 

h0(ln radians) 
so 
Co 

L.(In Vanguard units) 

H (In Vanguard units) 

Short period corrections 

n - h 
*i - ho 
so - S0 

^ - co 
L'  - L„ 

ANNA IB 

2.538 875 214 278 

0.949 636 751 294 

-0.002 107 639 831 

-0.006 371 881 838 

1.085 131 662 111 

0.695 348 576 283 

0.273 044 549 * 10 

0.342 375 395 * 10 

-0.369 163 708 x 10 

0.015 809  392 x 10 

-0.128 216 782 « 10 

-3 

-3 

-3 

-3 

-3 

RELAY II 

3.273 083 992 516 

-2.384 959 105 384 

-0.025 229 668 345 

-0.234 623 580 641 

1.322 050 356 567 

0.884 318 864 870 

-0.052 347 711 x 10 

-0.006 726 021 x 10 

0.123 600 234 x 10 

0.563 272 260  x 10 

-0.452 874 015  x 10 

-3 

-3 

-3 

-3 

-3 

Long period corrections 

F" - f0 Fo 
hö- h; 
sö- *i 
c; - Co 

Periods 

2TT/V, 

2TT/V2 

2*/K| 

0.005 752 x 10 

0.012  755 x 10 

-0.561 488 x io 

1.410 317 x io 

-6 

-6 

-6 

-6 

ln47m10?2139 

121d05h38in15?35 

99d17h34m55?60 

0.846 017 x 10 

2.070 715  x 10 

-2.404 673 x 10 

21.619 075  x 10 

-6 

-6 

-6 

-6 

3h15,,\)0!4528 

331d03h50in54?43 

332d22h12m57!ll 
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ll *  (X^VJ.Y^VJ.ZJ/VJ) 

where 

vi ' tti^l+z*)1*, 

bj -  (yGj.Bj/Gj.Cj/Gj) 

where 

^ " yizi - ziYi' 

BI - ZJXJ - x1Zv 

CI " XIYI " yIXl' 

Gj  -  (A2+B2+C2)'S, 

and 

nj -   ((BJZJ-CJYJVGJVJ,(CJXJ-AJZJ)/GJVJ,(AJYJ-BJXJ)/GJVJJ . 

Then the dot products 

constitute the projections of the error in position respectively on the 

tangent ("in-track error"), the normal ("along-track error")  and the 

binormal  ("across-track error")  of the orbit at time    t.    It is a 

characteristic feature of a perturbation theory that, while it yields a 

very close approximation of the   orbit even over very long range,  it 

leaves in error the basic clocks of the motion, namely the frequencies 

v.,  v   , v  .      However small the level of errors on these clocks,  they 

cumulate  linearly with time.    The predicted orbit coincides nicely with 

'.■ 

'•"■•v ~ 
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the real  trajectory of its initial conditions, but  the satellite takes a 

more and more pronounced habit of arriving too early or too late at the 

expected meeting places.    This story can be read in the diagrams of position 

errors  (Figure 2).     The deviations along and across the track are totally 

insignificant, but the errors in track show a secular trend.     (Note that 

for both satellites,  the tests cover more than one revolution of the peri- 

gee.)    Comparison with similar tests by Arsenault et al (1963) , Lubowe 

(1966)  and Bonavito et al  (1969)  should restore confidence in the capa- 

bilities of a satellite theory based on Delaunay's elements.     For ANNA IB, 

after more than 3000 revolutions,   the in-track error reaches only 0.2 meter; 

as  for RELAY II, after 2800 revolutions, it is still as small as 2 meters. 

Conclusions 

In Perturbation Theory, Lie  transforms will likely supersede Von 

Zeipel's method;  they provide easy routine schemes  for Inverting canonical 

transformations,  for determining the constants of the motion,  and for 

transposing state variables. 

Analytical expansions, however large the number of terms  in the series, 

are capable of very high accuracy over long Intervals of time.    As a matter 

of fact,  a Satellite Theory carried through the fourth order in its secular 

terms can deliver the accuracy presently contemplated by radar and laser 

experiments. 

Computers  can be programmed to generate developments of average 

complexity. 
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The present theory eradicates  the difficulties caused by small 

eccentricities.    It is evidently incomplete.    But it has solved in principle 

the problems to be encountered from including more  terms of the gravi- 

tational field,  the luni-solar perturbations and other perturbations derived 

from force functions. 

Readers Interested in having the series produced by the present 

algorithm should contact the first author of the paper. 

b*~k 
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